
340
algs



JOBS
• Many job interview questions revolve around: 

• Basic OOP programming 

• Basic Algorithm concepts 

• Many from THIS COURSE 

• Scenarios (how would you do X ?) 

• and stupid pointless BS questions



Code to English
Spectrum

MathProgram 
Code EnglishGreek



Fibonacci
• A Number sequence people like to refer to 

• if( n = 0 ) return 0 

• else if( n = 1 ) return 1 

• else return fib( n-1 ) + fib( n-2) 



Math Translation
• for loop 

• sum = 0; 

• for( i = 1; i < ∞; ++i ){ 

• sum = sum + 1 / i; 

• } 

• return ∞



number n

• n is a common variable which means number 

• number of items 

• A linear algorithm takes n operations to 
complete



Fibonacci

• What if you ask for ∞ or better — “n” 

• HOW MUCH WORK WOULD IT TAKE FOR n? 

• in code; you can’t. in pseudo code you can 

• in math… that is what math does



Speed of Fibonacci
• n=0 or n = 1 

• near instant! done! 

• n > 1 

• count “steps”  n=0 is one step  n=2 is one step 

• n=2 is 3 steps (adding two previous instants) 

• n>2  is 3 + Steps for(n-1) + Steps for (n-2)



exponential growth
don’t worry a whole lot until n becomes gets to 50…

100… then you’ll never calculate it





Big O notation
• A must know concept! 

• Job interview question 

• The big picture in measuring SPEED of 
algorithms 

• Simple algebra-level math description 

• WORST CASE time



SPEED
• My iPod is faster than your PC! 

• HOW YOU DO THINGS MATTERS 

• BogoSort vs QuickSort 

• The stupid sort (BogoSort) can take (e-1)n! 

• n! is factorial— a HUGE function



Count to 10
• for( i = 1; i<= n; ++i ){ // n = 10 

• print line ( i ); 

• } 

• Big-O (n)   =  so it’s linear; graphs as a line 

• aka: Order of n



Count

• print line ( “1 2 3 4 5 6 7 8 9 10” ); 

• Big-O (1)   =  constant speed. 1 operation. 

• aka: Order of 1 

• Think - string length! Store the length instead of 
counting it.



Count to 10
• for( i = 1; i<= n; ++i ){ // n = 10 

• for( x = 1; x<= n; ++x ){ // n = 10 

• print line ( i ); 

• } 

• } // yes this prints 10 of each number it counts 

• Big-O (n²)   =  exponential 

• aka: Order of n squared



Best case Ω

• omega Ω 

• For Fibonacci, best case is n=1 or n =0 

• Ω(1)  or “omega one” 

• Ω is not used a lot because we mostly care 
about typical or worst case.



Both cases Θ

• Θ Theta (yes more greek) 

• not used much but means the Best and Worst 
are the same. 

• Saves some writing adds more messy 
symbols…





Modulo
• REALLY USEFUL 

• % in many languages 

• Division remainder 

• 130 minutes / 60 = (floor or int) 2 hours 

• 130 minutes % 60 = remainder of 10 minutes



Primes

• Prime numbers are usually useful numbers 

• Encryption uses them 

• factors: 1,itself 

• testing algs..



510 = 17 x 30

390 = 13 x 30

330 = 11 x 30 



Hashing
• Generate a representative number for something 

• used extensively on strings in scripting 

• Similar to an ID … techID #, social security # , ip 
address, barcode 

• Many schemes to generate them — not much 
use if hash #s are duplicated.



Hash techniques
• Security - encryption - MD5 etc 

• Speed  - simple checksum or character total 

• Goal:  as few collisions as possible when 
searching the storage. 

• IP addresses: NAT and subnets… 1 hash for a 
group of people - not as good as individual IPs



Hash Tables
• Best case - Ω(1) 

• Worst case - O(n) 

• Indexed storage (array)  use hash to jump to that spot 
in the storage. 

• Check the spot if wrong data, jump to a predetermined 
RELATIVE position (like the next spot open spot) 

• Worst case, storage is FULL and hashes come out the 
same





Binary Search

• Divide and conquer  

• 0    1    2    3     4     5     6     7     8     9     10 


